A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit

نویسندگان

  • Mohammed Lemou
  • Luc Mieussens
چکیده

We propose a new numerical scheme for linear transport equations. It is based on a decomposition of the distribution function into equilibrium and non-equilibrium parts. We also use a projection technique that allows to reformulate the kinetic equation into a coupled system of an evolution equation for the macroscopic density and a kinetic equation for the non-equilibrium part. By using a suitable time semi-implicit discretization, our scheme is able to accurately approximate the solution in both kinetic and diffusion regimes. It is asymptotic preserving in the following sense: when the mean free path of the particles is small, our scheme is asymptotically equivalent to a standard numerical scheme for the limit diffusion model. A uniform stability property is proved for the simple telegraph model. Various boundary conditions are studied. Our method is validated in one-dimensional cases by several numerical tests and comparisons with previous asymptotic preserving schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits

In this work, we extend the micro-macro decomposition based numerical schemes developed in [3] to the collisional Vlasov-Poisson model in the diffusion and high-field asymptotics. In doing so, we first write the Vlasov-Poisson model as a system that couples the macroscopic (equilibrium) part with the remainder part. A suitable discretization of this micro-macro model enables to derive an asympt...

متن کامل

An asymptotic preserving scheme for the Kac model of the Boltzmann equation in the diffusion limit

In this paper we propose a numerical scheme to solve the Kac model of the Boltzmann equation for multiscale rarefied gas dynamics. This scheme is uniformly stable with respect to the Knudsen number, consistent with the fluid-diffusion limit for small Knudsen numbers, and with the Kac equation in the kinetic regime. Our approach is based on the micro-macro decomposition which leads to an equival...

متن کامل

Asymptotic-preserving scheme for highly anisotropic non-linear diffusion equations

Heat transfer in magnetically confined plasmas is a process characterized by non-linear and extremely high anisotropic diffusion phenomena. Standard numerical methods, successfully employed in the numerical treatment of classical diffusion problems, are generally inefficient, or even prone to break down, when such high anisotropies come into play, leading thus to the need of new numerical techn...

متن کامل

Micro-Macro Schemes for Kinetic Equations Including Boundary Layers

We introduce a new micro-macro decomposition of collisional kinetic equations in the specific case of the diffusion limit, which naturally incorporates the incoming boundary conditions. The idea is to write the distribution function f in all its domain as the sum of an equilibrium adapted to the boundary (which is not the usual equilibrium associated with f) and a remaining kinetic part. This e...

متن کامل

Asymptotic preserving schemes for the Wigner-Poisson-BGK equations in the diffusion limit

This work focusses on the numerical simulation of the Wigner-Poisson-BGK equation in the diffusion asymptotics. Our strategy is based on a “micro-macro” decomposition, which leads to a system of equations that couple the macroscopic evolution (diffusion) to a microscopic kinetic contribution for the fluctuations. A semi-implicit discretization provides a numerical scheme which is stable with re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2008